If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15y^2-45y-150=0
a = 15; b = -45; c = -150;
Δ = b2-4ac
Δ = -452-4·15·(-150)
Δ = 11025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{11025}=105$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-105}{2*15}=\frac{-60}{30} =-2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+105}{2*15}=\frac{150}{30} =5 $
| 7=12v-24 | | u−63=4 | | 3(x—4)=5x+6 | | g-18=30 | | (2m−16)=13(2m+4) | | j=5+15 | | c-22=31 | | 0,1x2-0,5x-3,6=0 | | 5x^2+3x+9=-10x+35x2+3x+9=−10x+3 | | -4y+18=20 | | s=84+11 | | 24/4a=3 | | m-85=63 | | 5x+1–2x=3x+7 | | –7u=91 | | 6m=–66 | | –2t+9=–20 | | 90+x=3x | | 14–4x=28 | | 27x4=6 | | 6m-10=-34 | | 5x+18=9x+13 | | 20-6a=21 | | f=6+8 | | 11x-2+9x+1=19+3 | | 20-6a=22 | | 4(y+6)=-4(4y-2)+2y | | Y(1800)+x(2400)=48000 | | 85-3=x÷2=x | | 1.37w=0. | | -z/0.5+1.4=-3 | | w/25=11 |